Лекция 22

Системы управления сетями

Средства анализа и управления сетями

Любая сложная вычислительная сеть требует дополнительных специальных средств управления помимо тех, которые имеются в стандартных сетевых ОС. Это связано с большим количеством разнообразного коммуникационного оборудования, работа которого критична для выполнения сетью своих основных функций. Распределенный характер крупной корпоративной сети делает невозможным поддержание ее работы без централизованной системы управления, которая в автоматическом режиме собирает информацию о состоянии каждого концентратора, коммутатора, мультиплексора и маршрутизатора и предоставляет эту информацию оператору сети. Обычно система управления работает в автоматизированном режиме, выполняя наиболее простые действия по управлению сетью автоматически, а сложные решения предоставляя принимать человеку на основе подготовленной системой информации. Система управления должна быть интегрированной. Это означает, что функции управления разнородными устройствами должны служить общей цели обслуживания конечных пользователей сети с заданным качеством.

Сами системы управления представляют собой сложные программно-аппаратные комплексы, поэтому существует граница целесообразности применения системы управления - она зависит от сложности сети, разнообразия применяемого коммуникационного оборудования и степени его распределенности по территории. В небольшой сети можно применять отдельные программы управления наиболее сложными устройствами, например, коммутатором, поддерживающим технику VLAN. Обычно каждое устройство, которое требует достаточно сложного конфигурирования, производитель сопровождает автономной программой конфигурирования и управления. Однако при росте сети может возникнуть проблема объединения разрозненных программ управления устройствами в единую систему управления, и для решения этой проблемы придется, возможно, отказаться от этих программ и заменить их интегрированной системой управления.

Функции и архитектура систем управления сетями

Задачи управления

Системы управления корпоративными сетями существуют не очень давно. Одной из первых систем такого назначения, получившей широкое распространения, был программный продукт SunNet Manager, выпущенный в 1989 году компанией SunSoft. SunNet Manager был ориентирован на управление коммуникационным оборудованием и контроль трафика сети. Именно эти функции имеют чаще всего в виду, когда говорят о системе управления сетью. Кроме систем управления сетями существуют и системы управления другими элементами корпоративной сети: системы управления ОС, СУБД, корпоративными приложениями. Применяются также системы управления телекоммуникационными сетями: телефонными, а также первичными сетями технологий PDH и SDH.

Независимо от объекта управления, желательно, чтобы система управления выполняла ряд функций, которые определены международными стандартами, обобщающими опыт применения систем управления в различных областях. Существуют рекомендации ITU-T X.700 и близкий к ним стандарт ISO 7498-4, которые делят задачи системы управления на пять функциональных групп:

Рассмотрим задачи этих функциональных областей управления применительно к системам управления сетями.

Управление конфигурацией сети и именованием (Configuration Management). Эти задачи заключаются в конфигурировании параметров как элементов сети (Network Element, NE), так и сети в целом. Для элементов сети, таких как маршрутизаторы, мультиплексоры и т.п., с помощью этой группы задач определяются сетевые адреса, идентификаторы (имена), географическое положение и пр.

Для сети в целом управление конфигурацией обычно начинается с построения карты сети, т.е. отображении реальных связей между элементами сети и изменении связей между элементами сети - образование новых физических или логических каналов, изменение таблиц коммутации и маршрутизации.

Управление конфигурацией (как и другие задачи системы управления) могут выполняться в автоматическом, ручном или полуавтоматическом режимах. Например, карта сети может составляться автоматически, на основании зондирования реальной сети пакетами-исследователями, а может быть введена оператором системы управления вручную. Чаще всего применяются полуавтоматические методы, когда автоматически полученную карту оператор подправляет вручную. Методы автоматического построения топологической карты, как правило, являются фирменными разработками.

Более сложной задачей является настройка коммутаторов и маршрутизаторов на поддержку маршрутов и виртуальных путей между пользователями сети. Согласованная ручная настройка таблиц маршрутизации при полном или частичном отказе от использования протокола маршрутизации (а в некоторых глобальных сетях, например, Х.25, такого протокола просто не существует) представляет собой сложную задачу. Многие системы управления сетью общего назначения ее не выполняют, но существуют специализированные системы конкретных производителей, например, система NetSys компании Cisco Systems, которая решает ее для маршуртизаторов этой же компании.

Обработка ошибок (Fault Management). Эта группа задач включает выявление, определение и устранение последствий сбоев и отказов в работе сети. На этом уровне выполняется не только регистрация сообщений об ошибках, но и их фильтрация, маршрутизация и анализ на основе некоторой корреляционной модели. Фильтрация позволяет выделить из весьма интенсивного потока сообщений об ошибках, который обычно наблюдается в большой сети, только важные сообщения, маршрутизация обеспечивает их доставку нужному элементу системы управления, а корреляционный анализ позволяет найти причину, породившую поток взаимосвязанных сообщений (например, обрыв кабеля может быть причиной большого количества сообщений о недоступности сетей и серверов).

Устранение ошибок может быть как автоматическим, так и полуавтоматическим. В первом случае система непосредственно управляет оборудованием или программными комплексами и обходит отказавший элемент за счет резервных каналов и т.п. В полуавтоматическом режиме основные решения и действия по устранению неисправности выполняют люди, а система управления только помогает в организации этого процесса - оформляет квитанции на выполнение работ и отслеживает их поэтапное выполнение (подобно системам групповой работы).

В этой группе задач иногда выделяют подгруппу задач управления проблемами, подразумевая под проблемой сложную ситуацию, требующую для разрешения обязательного привлечения специалистов по обслуживанию сети.

Анализ производительности и надежности (Performance Management). Задачи этой группы связаны с оценкой на основе накопленной статистической информации таких параметров, как время реакции системы, пропускная способность реального или виртуального канала связи между двумя конечным и абонентами сети, интенсивность трафика в отдельных сегментах и каналах сети, вероятность искажения данных при их передаче через сеть, а также коэффициент готовности сети или ее определенной транспортной службы. Функции анализа производительности и надежности сети нужны как для оперативного управления сетью, так и для планирования развития сети.

Результаты анализа производительности и надежности позволяют контролировать соглашение об уровне обслуживания (Service Level Agreement, SLA), заключаемое между пользователем сети и ее администраторами (или компанией, продающей услуги). Обычно в SLA оговариваются такие параметры надежности, как коэффициент готовности службы в течение года и месяца, максимальное время устранения отказа, а также параметры производительности, например, средняя и максимальная пропускная способности при соединении двух точек подключения пользовательского оборудования, время реакции сети (если информационная служба, для которой определяется время реакции, поддерживается внутри сети), максимальная задержка пакетов при передаче через сеть (если сеть используется только как транзитный транспорт). Без средств анализа производительности и надежности поставщик услуг публичной сети или отдел информационных технологий предприятия не сможет ни проконтролировать, ни тем более обеспечить нужный уровень обслуживания для конечных пользователей сети.

Управление безопасностью (Security Management). Задачи этой группы включают в себя контроль доступа к ресурсам сети (данным и оборудованию) и сохранение целостности данных при их хранении и передчае через сеть. Базовыми элементами управления безопасностью являются процедуры аутентификации пользователей, назначение и проверка прав доступа к ресурсам сети, распределение и поддержка ключей шифрования, управления полномочиями и т.п. Часто функции этой группы не включаются в системы управления сетями, а реализуются либо в виде специальных продуктов (например, системы аутентификации и авторизации Kerberos, различных защитных экранов, систем шифрования данных), либо входят в состав операционных систем и системных приложений.

Учет работы сети (Accounting Management). Задачи этой группы занимаются регистрацией времени использования различных ресурсов сети - устройств, каналов и транспортных служб. Эти задачи имеют дело с такими понятиями, как время использования службы и плата за ресурсы - billing. Ввиду специфического характера оплаты услуг у различных поставщиков и различными формами соглашения об уровне услуг, эта группа функций обычно не включается в коммерческие системы и платформы управления типа HP Open View, а реализуется в заказных системах, разрабатываемых для конкретного заказчика.

Модель управления OSI не делает различий между управляемыми объектами - каналами, сегментами локальных сетей, мостами, коммутаторами и маршрутизаторами, модемами и мультиплексорами, аппаратным и программным обеспечением компьютеров, СУБД. Все эти объекты управления входят в общее понятие "система", и управляемая система взаимодействует с управляющей системой по открытым протоколам OSI.

Однако на практике деление систем управления по типам  управляемых объектов широко распространено. Ставшими классическими системы управления сетями, такие как SunNet Manager, HP Open View или Cabletron Spectrum, управляют только коммуникационными объектами корпоративных сетей, т.е. концентраторами и коммутаторами локальных сетей, а также маршрутизаторами и удаленными мостами, как устройствами доступа к глобальным сетям. Оборудованием территориальных сетей обычно управляют системы производителей телекоммуникационного оборудования, такие как RADView компании RAD Data Communecations, MainStreetXpress 46020 компании Newbridge и т.п.

Рассмотрим, как описываются общие функциональные задачи системы управления, определенные в стандартах X.700/ISO 7498-4, для такого конкретного класса систем управления, как системы управления компьютерами и их системным и прикладным программным обеспечением. Их называют системами управления системой (System Management System).

Обычно система управления системой выполняет следующие функции.

Примерами систем управления системами являются Microsoft System Management Server (SMS), CA Unicenter, HP Operationscenter и многие другие.

Как видно из описания функций системы управления системами, они повторяют функции системы управления сетью, но только для других объектов. Действительно, функция учета используемых аппаратных и программных средств соответствует функции построения карты сети, функция распределения и установки программного обеспечения - функции управления конфигурацией коммутаторов и маршрутизаторов, а функция анализа производительности и возникающих проблем - функции производительности.

Эта близость функций систем управления сетями и систем управления системами позволила разработчикам стандартов OSI не делать различия между ними и разрабатывать общие стандарты управления.

На практике уже несколько лет также заметна отчетливая тенденция интеграции систем управления сетями и системами в единые интегрированные продукты управления корпоративными сетями, например, CA Unicenter TNG или TME-10 IBM/Tivoli. Наблюдается также интеграция систем управления телекоммуникационными сетями с системами управления корпоративными сетями.

Многоуровневая модель задач управления

Кроме описанного выше разделения задач управления на несколько функциональных групп, полезно разделять задачи управления на уровни в соответствии с иерархической организацией корпоративной сети. корпоративная сеть строится иерархически, отражая иерархию самого предприятия и его задач. Нижний уровень сети составляют элементы сети - отдельные компьютеры, коммуникационные устройства, каналы передачи данных. На следующем уровне иерархии эти элементы образуют сети разного масштаба - сеть рабочей группы, сеть отдела, сеть отделения и, наконец, сеть предприятия в целом.

Для построения интегрированной системы управления разнородными элементами сети естественно применить многоуровневый иерархический подход. Это, в принципе, стандартный подход для построения большой системы любого типа и назначения - от государства до автомобильного завода. Применительно к системам управления сетями наиболее проработанным и эффективным для создания многоуровневой иерархической системы является стандарт Telecommunication Management Network (TMN), разработанный совместными усилиями ITU-T, ISO, ANSI и ETSI. Хотя этот стандарт и предназначался изначально для телекоммуникационных сетей, но ориентация на использование общих принципов делает его полезным для построения любой крупной интегрированной системы управления сетями. Стандарты TMN состоят из большого количества рекомендаций ITU-T (и стандартов других организаций), но основные принципы модели TMN описаны в рекомендации М.3010.

На каждом уровне иерархии модели TMN решаются задачи одних и тех же пяти функциональных групп, рассмотренных выше (т.е. управления конфигурацией, производительностью, ошибками, безопасностью и учетом), однако на каждом уровне эти задачи имеют свою специфику. Чем выше уровень управления, тем более общий и агрегированный характер приобретает собираемая о сети информация, а сугубо технический характер собираемых данных начинает по мере повышения уровня меняться на производственный, финансовый и коммерческий.

Модель TMN упрощенно можно представить в виде следующей диаграммы (рис. 1).

Рис. 1. Многоуровневое представление задач управления сетью

Нижний уровень - уровень элементов сети (Network Element Layer, NE) - состоит из отдельных устройств сети: каналов, усилителей, оконечной аппаратуры, мультиплексоров, коммутаторов и т.п. Элементы могут содержать встроенные средства для поддержки управления - датчики, интерфейсы управления, а могут и представлять вещь в себе, требующую для связи с системой управления разработки специального оборудования - устройств связи с объектом, УСО. Современные технологии обычно имеют встроенные функции управления, которые позволяют выполнять хотя бы минимальные операции по контролю за состоянием устройства и за передаваемым устройством трафиком. Подобные функции встроены в технологии FDDI, ISDN, Frame Relay, SDH. В этом случае устройство всегда можно охватить системой вправления, даже если оно не имеет специального блока управления, т.к. протокол технологии обязывает устройство поддерживать некоторые функции управления. Устройства, которые работают по протоколам, не имеющим встроенных функций контроля и управления, снабжаются отдельным блоком управления, который поддерживает один из двух наиболее распространенных протоколов управления - SNMP или CMIP. Эти протоколы относятся к прикладному уровню модели OSI.

Следующий уровень - уровень управления элементами сети (Network Element Management Layer) - представляет собой элементарные системы управления. Элементарные системы управления автономно управляют отдельными элементами сети - контролируют канал связи SDH, управляют коммутатором или мультиплексором. Уровень управления элементами изолирует верхние слои системы управления от деталей и особенностей управления конкретным оборудованием. Этот уровень ответственен за моделирование поведения оборудования и функциональных ресурсов нижележащей сети. Атрибуты этих моделей позволяют управлять различными аспектами поведения управляемых ресурсов. Обычно элементарные системы управления разрабатываются и поставляются производителями оборудования. Примерами таких систем могут служить системы управления Cisco View от Cisco Systems, Optivity от Bay Networks, RADView от RAD Data Communications и т.д.

Выше лежит уровень управления сетью (Network Management Layer). Этот уровень координирует работу элементарных систем управления, позволяя контролировать конфигурацию составных каналов, согласовывать работу транспортных подсетей разных технологий и т.п. С помощью этого уровня сеть начинает работать как единое целое, передавая данные между своими абонентами.

Следующий уровень - уровень управления услугами (Service Management Layer) - занимается контролем и управлением за транспортными и информационными услугами, которые предоставляются конечным пользователям сети. В задачу этого уровня входит подготовка сети к предоставлению определенной услуги, ее активизация, обработка вызовов клиентов. Формирование услуги (service provisioning) заключается в фиксации в базе данных значений параметров услуги, например, требуемой средней пропускной способности, максимальных величин задержек пакетов, коэффициента готовности и т.п. В функции этого уровня входит также выдача уровню управления сетью задания на конфигурирование виртуального или физического канала связи для поддержания услуги. После формирования услуги данный уровень занимается контролем за качеством ее реализации, т.е. за соблюдением сетью всех принятых на себя обязательств в отношении производительности и надежности транспортных услуг. Результаты контроля качества обслуживания нужны, в частности, для подсчета оплаты за пользование услугами клиентами сети. Например, в сети Frame Relay уровень управления услугами следит за заказанными пользователем значениями средней скорости и согласованной пульсации, фиксируя нарушения со стороны пользователя и сети.

Уровень бизнес-управления (Business Management Layer) занимается вопросами долговременного планирования сети с учетом финансовых аспектов деятельности организации, владеющей сетью. На этом уровне помесячно и поквартально подсчитываются доходы от эксплуатации сети и ее отдельных составляющих, учитываются расходы на эксплуатацию и модернизацию сети, принимаются решения о развитии сети с учетом финансовых возможностей. Уровень бизнес-управления обеспечивает для пользователей и поставщиков услуг возможность предоставления дополнительных услуг. Этот уровень является частным случаем уровня автоматизированной системы управления предприятием (АСУП), в то время как все нижележащие уровни соответствуют уровням автоматизированной системы управления технологическими процессами (АСУТП), для такого специфического типа предприятия, как телекоммуникационная или корпоративная сеть. Но если телекоммуникационная сеть действительно чаще всего является основой телекоммуникационной компании, то корпоративную сеть и обслуживающий ее персонал обычно трудно назвать предприятием. Тем не менее, на некоторых западных фирмах корпоративная сеть выделена в автономное производственное подразделение со своим бюджетом и со своими финансовыми договорами на обслуживание, которое данное подразделение заключает с основными производственными подразделениями предприятия.

Архитектура систем управления сетями

Выделение в системах управления типовых групп функций и разбиение этих функций на уровни еще не дает ответа на вопрос, каким же образом устроены системы управления, из каких элементов они состоят и какие архитектуры связей этих элементов используются на практике.

Схема Менеджер-агент

В основе любой системы управления сетью лежит элементарная схема взаимодействия агента с менеджером. На основе этой схемы могут быть построены системы практически любой сложности с большим количеством агентов и менеджеров разного типа.

Схема "менеджер-агент" представлена на рис. 2.

 

Рис. 2. Взаимодействие агента, менеджера и управляемого ресурса

Агент является посредником между управляемым ресурсом и основной управляющей программой-менеджером. Чтобы один и тот же менеджер мог управлять различными реальными ресурсами, создается некоторая модель управляемого ресурса, которая отражает только те характеристики ресурса, которые нужны для его контроля и управления. Например, модель маршрутизатора обычно включает такие характеристики, как количество портов, их тип, таблицу маршрутизации, количество кадров и пакетов протоколов канального, сетевого и транспортного уровней, прошедших через эти порты.

Менеджер получает от агента только те данные, которые описываются моделью ресурса. Агент же является некоторым экраном, освобождающим менеджера от ненужной информации о  деталях реализации ресурса.
Агент поставляет менеджеру обработанную и представленную в нормализованном виде информацию. На основе этой информации менеджер принимает решения по управлению, а также выполняет дальнейшее обобщение данных о состоянии управляемого ресурса, например, строит зависимость загрузки порта от времени.

Для получения требуемых данных от объекта, а также для выдачи на него управляющих воздействий агент взаимодействует с реальным ресурсом некоторым нестандартным способом. Когда агенты встраиваются в коммуникационное оборудование, то разработчик оборудования предусматривает точки и способы взаимодействия внутренних узлов устройства с агентом. При разработке агента для операционной системы разработчик агента пользуется теми интерфейсами, которые существуют в этой ОС, например интерфейсами ядра, драйверов и приложений. Агент может снабжаться специальными датчиками для получения информации, например датчиками релейных контактов или датчиками температуры.

Менеджер и агент должны располагать одной и той же моделью управляемого ресурса, иначе они не смогут понять друг друга. Однако в использовании этой модели агентом и менеджером имеется существенное различие. Агент наполняет модель управляемого ресурса текущими значениями характеристик данного ресу4рса, и в связи с этим модель агента называют базой данных управляющей информации - Management Information Base, MIB. Менеджер использует модель, чтобы знать о том, чем характеризуется ресурс, какие характеристики он может запросить у агента и какими параметрами можно управлять.

Менеджер взаимодействует с агентами по стандартному протоколу. Этот протокол должен позволять менеджеру запрашивать значения параметров, хранящихся в базе MIB, а также передавать агенту управляющую информацию, на основе которой тот должен управлять устройством. Различают управление in-band, т.е. по тому же каналу, по которому передаются пользовательские данные, и управление out-of-band, т.е. вне канала, по которому передаются пользовательские данные. Например, если менеджер взаимодействует с агентом, встроенным в маршрутизатор, по протоколу SNMP, передаваемому по той же локальной сети, что и пользовательские данные, то это будет управление in-band. Если же менеджер контролирует коммутатор первичной сети, работающий по технологии частотного уплотнения FDM, с помощью отдельной сети X.25, к которой подключен агент, то это будет управление out-of-band. Управление по тому же каналу, по которому работает сеть, более экономично, т.к. не требует создания отдельной инфраструктуры передачи управляющих данных. Однако способ out-of-band более надежен, т.к. он предоставляет возможность управлять оборудованием сети и тогда, когда какие-то элементы сети вышли из строя и по основным каналам оборудование недоступно. Стандарт многоуровневой системы управления TMN имеет в своем названии слово Network, подчеркивающее, что в общем случае для управления телекоммуникационной сетью создается отдельная управляющая сеть, которая обеспечивает режим out-of-band.

Обычно менеджер работает с несколькими агентами, обрабатывая получаемые от них данные и выдавая на них управляющие воздействия. Агенты могут встраиваться в управляемое оборудование, а могут и работать на отдельном компьютере, связанном с управляемым оборудованием по какому-либо интерфейсу. Менеджер обычно работает на отдельном компьютере, который выполняет также роль консоли управления для оператора или администратора системы.

Модель менеджер-агент лежит в основе таких популярных стандартов управления, как стандарты Internet на основе протокола SNMP и стандарты управления ISO/OSI на основе протокола CMIP.

Агенты могут отличаться различным уровнем интеллекта - они могут обладать как самым минимальным интеллектом, необходимым для подсчета проходящих через оборудование кадров и пакетов, так и весьма высоким, достаточным для выполнения самостоятельных действий по выполнению последовательности управляющих действий в аварийных ситуациях, построению временных зависимостей, фильтрации аварийных сообщений и т.п.

Структура распределенных систем управления

В крупной корпоративной сети полностью централизованная система управления, построенная на базе единственного менеджера, вряд ли будет работать хорошо по нескольким причинам. Во-первых, такой вариант не обеспечивает необходимой масштабируемости по производительности, т.к. единственный менеджер вынужден будет обрабатывать весь поток сообщений от всех агентов, что при нескольких тысячах управляемых объектов потребует очень высокопроизводительной платформы для работы менеджера и перегрузит служебной управляющей информацией каналы передачи данных в той сети, где будет расположен менеджер. Во-вторых, такое решение не обеспечит необходимого уровня надежности, т.к. при отказе единственного менеджера будет потеряно управление сетью. В-третьих, в большой распределенной сети целесообразно располагать в каждом географическом пункте отдельным оператором или администратором, управляющим своей частью сети, а это удобнее реализовать с помощью отдельных менеджеров для каждого оператора.

Схема "менеджер-агент" позволяет строить достаточно сложные в структурном отношении распределенные системы управления.

Обычно распределенная система управления включает большое количество связок менеджер-агент, которые дополняются рабочими станциями операторов сети, с помощью которых они получают доступ к менеджерам (рис.3).

 

Рис. 3. Распределенная система управления на основе нескольких менеджеров и рабочих станций

Каждый агент собирает данные и управляет определенным элементом сети. Менеджеры, иногда также называемые серверами системы управления, собирают данные от своих агентов, обобщают их и хранят в базе данных. Операторы, работающие за рабочими станциями, могут соединиться с любым из менеджеров и с помощью графического интерфейса просмотреть данные об управляемой сети, а также выдать менеджеру некоторые директивы по управлению сетью или ее элементами.

Наличие нескольких менеджеров позволяет распределить между ними нагрузку по обработке данных управления, обеспечивая масштабируемость системы.

Как правило, связи между агентами и менеджерами носят более упорядоченный характер, чем тот, который показан на рис.3. Чаще всего используются два подхода к их соединению - одноранговый (рис.4) и иерархический (рис.5).

 

Рис. 4. Одноранговые связи между менеджерами

В случае одноранговых связей каждый менеджер управляет своей частью сети  на основе информации, получаемой от нижележащих агентов. Центральный менеджер отсутствует. Координация работы менеджеров достигается за счет обмена информацией между абазами данных каждого менеджера.

Одноранговое построение системы управления сегодня считается неэффективным и устаревшим. Обычно оно вызвано тем обстоятельством, что элементарные системы управления построены как монолитные системы, которые первоначально не были ориентированы на модульность системы (например, многие системы управления, разработанные производителями оборудования, не поддерживают стандартные интерфейсы для взаимодействия с другими системами управления). Затем эти менеджеры нижнего уровня стали объединяться для создания интегрированной системы управления сетью, но связи между ними оказалось возможным создавать только на уровне обмена между базами данных, что достаточно медленно. Кроме того, в базах данных таких менеджеров накапливается слишком детальная информация об управляемых элементах сети (т.к. первоначально эти менеджеры разрабатывались как менеджеры нижнего уровня), вследствие чего такая информация малопригодна для координации работы всей сети в целом. Такой подход к построению системы управления называется подходом "снизу вверх".

 

Рис. 5. Иерархические связи между менеджерами

Гораздо более гибким является иерархическое построение связей между менеджерами. Каждый менеджер нижнего уровня выполняет также функции агента для менеджера верхнего уровня. Такой  агент работает уже с гораздо более укрупненной моделью (MIB) своей части сети, в которой собирается именно та информация, которая нужна менеджеру верхнего уровня для управления сетью в целом. Обычно для разработки моделей сети на разных уровнях проектирование начинают с верхнего уровня, на котором определяется состав информации, требуемой от менеджеров-агентов более низкого уровня, поэтому такой подход назван подходом "сверху вниз". Он сокращает объемы информации, циркулирующей между уровнями системы управления, и приводит к гораздо более эффективной системе управления.

Модель TMN в наибольшей степени соответствует иерархической архитектуре связей между менеджерами, хотя известны реализации принципов TMN и в одноуровневых архитектурах.

Платформенный подход

При построении систем управления крупными локальными и корпоративными сетями обычно используется платформенный подход, когда индивидуальные программы управления разрабатываются не "с нуля", а используют службы и примитивы, предоставляемые специально разработанным для этих целей программным продуктом - платформой. Примерами платформ для систем управления являются такие известные продукты, как HP OpenView, SunNet Manager и Sun Soltice, Cabletron Spectrum, IBM/Tivoli TMN10.

Эти платформы создают общую операционную среду для приложений системы управления точно так же, как универсальные операционные системы, такие как Unix или Windows, создают операционную среду для приложений любого типа, таких как Ms Word, Oracle и т.п. Платформа обычно включает поддержку протоколов взаимодействия менеджера с агентами - SNMP и реже CMIP, набор базовый средств для построения менеджеров и агентов, а также средства графического интерфейса для создания консоли управления. В набор базовых средств обычно входят функции, необходимые для построения карты сети, средства фильтрации сообщений от агентов, средства ведения базы данных. Набор интерфейсных функций платформы образует интерфейс прикладного программирования (API) системы управления. Пользуясь этим API, разработчики из третьих фирм создают законченные системы управления, которые могут управлять специфическим оборудованием в соответствии с пятью основными группами функций.

Обычно платформа управления поставляется с каким-либо универсальным менеджером, который может выполнять некоторые базовые функции управления без программирования. Чаще всего к этим функциям относятся функции построения карты сети (группа Configuration Management), а также функции отображения состояния управляемых устройств и функции фильтрации сообщений об ошибках (группа  Fault Management). Например, одна из наиболее популярных платформ HP OpenView поставляется с менеджером Network Node Manager, который выполняет перечисленные функции.

Чем больше функций выполняет платформа, тем лучше. В том числе и таких, которые нужны для разработки любых аспектов работы приложений, прямо не связанных со спецификой управления. В конце концов, приложения системы управления - это прежде всего приложения, а потом уже приложения системы управления. Поэтому полезны любые средства, предоставляемые платформой, которые ускоряют разработку приложений вообще и распределенных приложений в частности.

Компании, которые производят коммуникационное оборудование, разрабатывают дополнительные менеджеры для популярных платформ, которые выполняют функции управления оборудованием данного производителя более полно. Примерами таких менеджеров могут служить менеджеры системы Optivity компании Bay Networks и менеджеры системы Trancsend компании 3Com, которые могут работать в среде платформ HP Open View и SunNet Manager.

Стандарты систем управления

Стандартизуемые элементы системы управления

При формализации схемы "менеджер-агент" могут быть стандартизованы следующие аспекты ее функционирования:

Существующие стандарты на системы управления отличаются тем, что в них могут быть стандартизованы не все перечисленные выше аспекты схемы "менеджер-агент".

В стандартах систем управления как минимум стандартизуется некоторый способ формального описания моделей управляемых объектов, а также определяется протокол взаимодействия между менеджером и агентом.

Сегодня на практике применяются два семейства стандартов управления сетями - стандарты Internet, построенные на основе протокола SNMP (Simple Network Management Protocol), и международные стандарты ISO/ITU-T, использующие в качестве протокола взаимодействия агентов и менеджеров протокол CMIP (Common Management Information Protocol).

Стандарты систем управления, основанных на протоколе SNMP, формализуют минимум аспектов системы управления, а стандарты ISO/ITU-T - максимум аспектов, как и большинство стандартов, разработанных ITU-T. Традиционно, в локальных и корпоративных сетях применяются в основном системы управления на основе SNMP, а стандарты ISO/ITU-T и протокол CMIP находя применение в телекоммуникационных сетях.

Стандарты SNMP-управления

Концепции SNMP-управления

В системах управления, построенных на основе протокола SNMP стандартизуются следующие элементы:

Все остальное отдается на усмотрение разработчика системы управления.

Протокол SNMP и тесно связанная с ним концепция SNMP MIB были разработаны для управления маршуртизаторами Internet как временное решение. Но, как это часто бывает со всем временным, простота и эффективность решения обеспечили успех этого протокола, и сегодня он используется при управлении практически любыми видами оборудования и программного обеспечения вычислительных сетей. И хотя в области управления телекоммуникационными сетями наблюдается устойчивая тенденция применения стандартов ITU-T, в которые входит протокол CMIP, и здесь имеется достаточно много примеров успешного использования SNMP-управления. Агенты SNMP встраиваются в аналоговые модемы, модемы ADSL, коммутаторы  ATM и т.д.

SNMP - это протокол прикладного уровня, разработанный для стека TCP/IP, хотя имеются его реализации и для других стеков, например, IPX/SPX. Протокол SNMP используется для получения от сетевых устройств информации об их статусе, производительности и других характеристиках, которые хранятся в базе данных управляющей информации MIB (Management Information Base). Простота SNMP во многом определяется простотой MIB SNMP, особенно их первых версий MIB-I и MIB-II. Кроме того, сам протокол SNMP также весьма несложен.

Существуют стандарты, определяющие структуру MIB, в т.ч. набор типов ее объектов, их имена и допустимые операции над этими объектами (например, "читать").

Древовидная структура MIB содержит обязательные (стандартные) поддеревья, а также в ней могут находится частные (private) поддеревья, позволяющие изготовителю интеллектуальных устройств управлять какими-либо специфическ4ими функциями устройства на основе специфических объектов MIB.

Агент в протоколе SNMP - это обрабатывающий элемент, который обеспечивает менеджерам, размещенным на управляющих станциях сети, доступ к значениям переменных MIB и тем самым дает им возможность реализовывать функции по управлению и наблюдению за устройством.

Основные операции по управлению вынесены в менеджер, а агент SNMP выполняет чаще всего пассивную роль, передавая в менеджер по его запросу значения накопленных статистических переменных. При этом устройство работает с минимальными издержками на поддержание управляющего протокола. Оно использует почти всю свою вычислительную мощность для выполнения своих основных функций маршуртизатора, моста или концентратора, а агент занимается сбором статистики и значений переменных состояния устройства и передачей их менеджеру системы управления.

Команды протокола SNMP

SNMP - это протокол типа "запрос-ответ", т.е. на каждый запрос, поступивший от менеджера, агент должен передать ответ. Особенностью протокола является его чрезвычайная простота - он включает в себя всего несколько команд.

Get-request
Команда используется менеджером для получения от агента значения какого-либо объекта по его имени.
GetNext-request
Команда используется менеджером для извлечения значения следующего объекта (без указания его имени) при последовательном просмотре таблицы объектов.
Get-response
С помощью этой команды агент SNMP передает менеджеру ответ на команды Get-request или GetNext-request.
Set
Команда используется менеджером для изменения значения какого-либо объекта. С помощью команды Set происходит собственно управление устройством. Агент должен понимать смысл значений объекта, который используется для управления устройством, и на основании этих значений выполнять реальное управляющее воздействие - отключить порт, приписать порт определенной VLAN и т.п. Команда Set пригодна также для установки условия, при выполнении которого агент SNMP должен послать менеджеру соответствующее сообщение. Может быть определена реакция на такие события, как инициализация агента, рестарт агента, обрыв связи, восстановление связи, неверная аутентификация и потеря ближайшего маршрутизатора. Если происходит любое из этих событий, то агент инициализирует прерывание.
Trap
Команда используется агентом для сообщения менеджеру о возникновении особой ситуации.

Структура MIB SNMP

На сегодня существует несколько стандартов на базы данных управляющей информации для протокола SNMP. Основными являются стандарты MIB-I и MIB-II, а также версия базы данных для удаленного управления RMON MIB. Кроме этого существуют стандарты для специальных устройств MIB конкретного типа (например, MIB для концентраторов или MIB для модемов), а также частные MIB конкретных фирм-производителей оборудования.

Современная спецификация определяет более 200 объектов, которые подразделяются на несколько групп:

System -
общие данные об устройстве (например, идентификатор поставщика, время последней инициализации системы).
Interface -
параметры сетевых интерфейсов устройства (например, их количество, типы, скорости обмена, максимальный размер пакета).
Address Translation Table -
описание соответствия между сетевыми и физическими адресами (например, по протоколу ARP).
Internet Protocol -
данные, относящиеся к протоколу обмена управляющими сообщениями ICMP.
TCP -
данные, относящиеся к протоколу TCP (например, о TCP-соединениях).
UDP -
данные, относящиеся к протоколу UDP (число переданных, принятых и ошибочных UDP-дейтаграмм).
EGP -
данные, относящиеся к протоколу обмена маршрутной информацией Exterior Gateway Protocol, используемому в Internet (число принятых с ошибками и без ошибок сообщений).

Базы данных MIB-I и MIB-II не дают детальной статистики по характерным ошибкам кадров Ethernet, кроме этого, они не отражают изменение характеристик во времени, что часто интересует сетевого администратора.

Эти ограничения были впоследствии сняты новым стандартом на MIB - RMON MIB, который специально ориентирован на сбор детальной статистики по протоколу Ethernet, к тому же с поддержкой такой важной функции, как построение агентом зависимостей статистических характеристик от времени.

До появления RMON протокол SNMP не мог использоваться удаленным образом, он допускал только локальное управление устройствами. База RMON MIB обладает улучшенным набором свойств для удаленного управления, т.к. содержит агрегированную информацию об устройстве, не требующую передачи по сети больших объемов информации. Объекты RMON MIB включают дополнительные счетчики ошибок в пакетах, более гибкие средства анализа трендов и статистики, более мощные средства фильтрации для захвата и анализа отдельных пакетов, а также более сложные условия установления сигналов предупреждения. Агенты RMON MIB более интеллектуальны по сравнению с агентами MIB-I или MIB-II и выполняют значительную часть работы по обработке информации об устройстве, которую раньше выполняли менеджеры. Эти агенты могут располагаться внутри различных коммуникационных устройств, а также быть выполнены в виде отдельных программных модулей, работающих на универсальных персональных компьютерах и ноутбуках.

Объекту RMON присвоен номер 16 в наборе объектов MIB, а сам объект RMON объединяет 10 групп следующих объектов:

Statistics -
текущие накопленные статистические данные о характеристиках пакетов, количестве коллизий и т.п.
History -
статистические данные, сохраненные через определенные промежутки времени для последующего анализа тенденций их изменений.
Alarms -
пороговые значения статистических показателей, при превышении которых агент RMON посылает сообщение менеджеру.
Hosts -
данные о хостах сети, в т.ч. и о их MAC-адресах.
GostTopN -
таблица наиболее загруженных хостов сети.
Traffic Matrix -
статистика об интенсивности трафика между каждой парой хостов сети, упорядоченная в виде матрицы.
Filter -
условия фильтрации пакетов.
Packet Capture -
условия захвата пакетов.
Event -
условия регистрации и генерации событий.

Всего стандарт RMON MIB определяет около 200 объектов в 10 группах, зафиксированных в двух документах - RFC 1271 для сетей Ethernet и RFC 1513 для сетей Token Ring.

Отличительной чертой стандарта RMON MIB является его независимость от протокола сетевого уровня (в отличие от стандартов MIB-I и MIB-II, ориентированных на протоколы TCP/IP). Поэтому он удобен для гетерогенных сред, использующих различные протоколы сетевого уровня.

С помощью агента RMON, встроенного в повторитель или другое коммуникационное устройство, можно провести очень детальный анализ работы сегмента Ethernet или Fast Ethernet. Сначала можно получить данные о встречающихся в сегменте типах ошибок в кадрах, а затем целесообразно собрать с помощью группы History зависимости интенсивности этих ошибок от времени. После анализа временных зависимостей часто уже можно сделать некоторые предварительные выводы об источнике ошибочных кадров и на этом основании сформулировать более тонкие условия захвата кадров со специфическими признаками (задав условия в группе Filter), соответствующими выдвинутой версии. После этого можно провести еще более детальный анализ за счет изучения захваченных кадров, извлекая их из объектов группы PacketCapture.

Недостатки протокола SNMP

Протокол SNMP служит основой многих систем управления, хотя имеет несколько принципиальных недостатков, которые перечислены ниже.

Разработчики платформ управление стараются преодолеть эти недостатки. Надежный обмен сообщениями между агентами и менеджерами организуются за счет самостоятельной организации повторных передач сообщений SNMP при их потерях.

Стандарты управления OSI

Концепция управления OSI

Модель сетевого управления OSI - OSI Management Framework - является развитием общей семиуровневой модели взаимодействия открытых систем для случая, когда одна система управляет другой.

Согласно этой модели, обмен управляющей информацией с использованием протокола управления происходит между субъектами приложений управления системами (Systems Management Application Entities, SMAE). Субъекты SMAE расположены на прикладном уровне семиуровневой модели OSI и являются элементами службы управления. Под субъектом в модели OSI понимается активный в данный момент элемент протокола какого-либо уровня, участвующий во взаимодействии. Примерами SMAE являются агенты и менеджеры систем управления.

Функции агентов и менеджеров в стандартах OSI аналогичны стандартам SNMP-систем. В дополнение к ним агенты могут посылать менеджеру сообщения (уведомления) по своей инициативе. Например, если некоторый элемент сети Х отказал, то менеджеру необходимо обновить свою базу данных конфигурации сети. Элемент Х, который является для системы управления управляемым объектом, может послать уведомление агенту. Элемент Х может находиться в той же управляемой системе, что и агент, или может находиться в другой системе. В свою очередь агент посылает уведомление менеджеру о том, что элемент Х отказал. В соответствии с этим уведомлением менеджер обновляет базу данных конфигурации.

Менеджер не только собирает и сопоставляет данные, получаемые от агентов, на основе этих данных он может также выполнять административные функции, управляя операциями удаленных агентов.

В стандартах OSI границы между менеджерами и агентами не очень четкие. Субъект SMAE, выполняющий в одном взаимодействии роль менеджера, может в другом взаимодействии выполнять роль агента, и наоборот.

Стандарты OSI не определяют способов взаимодействия агента с управляемыми объектами. Стандарты OSI также не говорят о том, как агент взаимодействует с управляемыми объектами, которые находятся за пределами управляемой системы, т.е. объектами, с которыми нужно взаимодействовать через сеть. В таких случаях может потребоваться, например, чтобы один агент запросил данные о некотором объекте от другого агента. Порядок такого рода взаимодействия также не определяется стандартами OSI.

Чтобы менеджер и агент смогли взаимодействовать, каждый должен иметь определенные знания о другом. Эти знания модель OSI называем контекстом приложения. Контекст приложения описывает элементы прикладного уровня стека OSI, которые используются агентами и менеджерами.

Управляемые объекты

Управляемый объект - это представление OSI о ресурсе в целях управления. Ресурс может быть описан как управляемый объект. Конкретный управляемый объект - это экземпляр некоторого класса управляемых объектов. Модель управления OSI широко использует объектно-ориентированный подход. Класс управляемых объектов - это набор свойств, которые могут быть обязательными или условными. С помощью описания одного класса управляемых объектов, например, коммутаторов, можно создать другой класс управляемых объектов, например, коммутаторов, поддерживающих технику VLAN, унаследовав все свойства класса коммутаторов, но добавив новые атрибуты.

Для управления ресурсами менеджер и агент должны быть осведомлены о деталях этих ресурсов. Детализация представления управляемых объектов, которые требуются для выполнения функций управления, хранится в репозитории, известном как Management Information Base (MIB). Базы MIB OSI хранят не только описания классов управляемых объектов, но и характеристики сети и ее элементов. Базы MIB содержат характеристики каждой части управляемого оборудования и ресурсов. MIB также включает описание действий, которые могут выполняться на основе собранных данных или же вызываемые внешними командами. Базы MIB позволяют внешним системам опрашивать, изменять, создавать и удалять управляемые объекты (реальные ресурсы сети при этом, естественно, продолжают работать). Протокол CMIP и локальные интерфейсы управления обеспечивают доступ к этим возможностям.

MIB - это концептуальная модель, и она не имеет никакой связи со способом физического или логического хранения данных в ресурсе. Стандарты не определяют аспекты собственно хранения данных. Протоколы OSI определяют синтаксис информации, хранящейся в MIB, и семантику обмена данными.

Деревья знаний

Крупная система управления обычно состоит из большого количества агентов и менеджеров. Для организации автоматического взаимодействия между менеджерами и агентами необходимо каким-то образом задать данные, содержащие характеристики агентов и менеджеров. Менеджеру необходимо знать о том, какие агенты работают в системе управления, из имена и сетевые адреса, поддерживаемые ими классы управляемых объектов и т.п. Агенту также необходима аналогичная информация о менеджерах, т.к. ему нужно отправлять по своей инициативе уведомления и отвечать на запросы менеджеров.

Такие данные называются в модели OSI разделяемыми управляющими знаниями (shared management knowledge) между менеджером и агентом. (В системах SNMP организация этих данных не стандартизована, и в каждой конкретной системе управления эти данные хранятся в индивидуальной форме).

Разделяемые управляющие знания должны быть известны до установления ассоциации между агентом и менеджером. Обычно они хранятся в каком-либо файле или распределенной базе данных и запрашиваются каждый раз, когда устанавливается ассоциация. Во время установления ассоциации происходит обмен разделяемыми управляющими знаниями.

В OSI стандартизуются различные аспекты организации управляющих знаний и доступа к ним. Следование объектно-ориентированному подходу обусловило использование для хранения этих знаний специальных системных объектов.

Имеются три типа управляющих знаний и, соответственно, три типа объектов, которые описывают эти знания.

Знания репертуара (Repertoire Knowledge)
описывают возможности управляемой системы, включающие перечень поддерживаемых классов управляемых объектов, поддерживаемые функции управления и именования. Знания репертуара помогают менеджеру идентифицировать возможности управляемых систем без доступа к ним.
Знания определений (Definition Knowledge)
включают формальные описания классов управляемых объектов, категории тестов, классов взаимосвязей и определения управляющей информации, понимаемой управляемой системой.
Знания об экземплярах (Instance Knowledge)
обеспечивают информацию о конкретных экземплярах управляемых объектов, имеющихся в управляемой системе.

В системе управления знания о поддерживаемых классах объектов и о порожденных экземплярах объектов должны храниться в какой-либо форме, удобной для предоставления модулям системы управления доступа к этой информации. Архитектура управления OSI предусматривает несколько схем базы данных об управляемых объектах и их классах. Эти схемы обычно называют деревьями из-за иерархической организации информации. Существуют следующие деревья.

Дерево наследования (Inheritance Tree) -
называемое также деревом регистрации. Описывает отношения между базовыми и производными классами. Подчиненный класс наследует все характеристики суперкласса и дополняет их специфическими расширениями (дополнительными атрибутами, поведениями и действиями).
Дерево включений (Containment Tree) -
описывает отношения включения управляемых объектов реальной системы. Между деревом наследования и деревом включений нет прямой связи. Например, в дереве включений объект "корпоративный концентратор" может включать объекты "интерфейс Ethernet" и "модуль удаленного доступа", которые представляют модели реальных модулей, установленный в слоты корпоративного концентратора. В то же время в дереве наследования класс объектов "интерфейсы Ethernet" подчинен классу объектов "интерфейсы", а класс объектов "модуль удаленного доступа" подчинен классу "коммуникационное оборудование третьего уровня", на основании которого он порожден.
Дерево имен (Naming Tree) -
определяет способ именования объектов в системе управления. Объекты OSI могут иметь имена нескольких типов: относительное отличительное имя (Relative Distinguished Name, RDN), отличительное имя (Distinguished Name, DN), иногда называемое полным отличительным именем (Full Distinguished Name, FDN), и локальное отличительное имя (Local Distinguished Name, LDN). Эти имена связаны с деревом включений, т.к. определяют имена объектов относительно включающих их объектов. Относительное имя, RDN, соответствует короткому имени, которое однозначно определяет объект среди множества других объектов, подчиненных тому же родительскому объекту. Например, имя interface_a является RDN-именем, уникально характеризующим объект среди объектов, подчиненных объекту node_a. Полное отличительное имя FDN представляет собой последовательность RDN-имен, начинающуюся в вершине глобального дерева имен, т.е. дерева, описывающего некоторую глобальную сеть. Наконец, локальное отличительное имя - это последовательность RDN-имен, но начинающаяся не в глобальном корне, а в корне дерева имен локальной системы управления, отвечающей за часть глобального дерева имен данной сети.

Пример дерева включений показан на рис.6. Экземпляр управляемого объекта класса corp-conc (корпоративный концентратор) имеет имя В1, а также атрибут max-slotes, описывающий максимальное количество слотов данного класса концентраторов, равный в данном случае 14. В этот объект включены ряд других объектов: объекты класса repeater, switch и RAS, которые в свою очередь включают объекты типа interface, описывающие порты модулей концентратора.

 

Рис. 6. Пример дерева включений

Имя класса объекта позволяет обратиться к описанию класса и узнать полный список атрибутов этого класса или ссылку на родительский класс, у которого наследуются все или некоторые атрибуты. Имя экземпляра объекта дает информацию о принадлежности конкретного модуля или интерфейса определенному коммуникационному устройству, например имя В1.Е1.Р2 определяет второй порт модуля повторителя Е1, входящего в сотав корпоративного концентратора В1.

Протокол CMIP

Взаимодействие между менеджером и агентом в модели OSI осуществляется по протоколу CMIP. И менеджер, и агент могут предоставлять определенные услуги.

Услуги, инициируемые менеджером, включают следующие операции:

Агент инициирует только одну операцию:

Отличие услуг протокола CMIP от аналогичных услуг SNMP состоит в большей гибкости. Если запросы GET и SET протокола SNMP применимы только к одному атрибуту одного объекта, то запросы M-GET, M-SET, M-ACTION и M-DELETE могут применяться к более чем одному объекту.

Сравнение протоколов SNMP и CMIP

Выводы

Сайт управляется системой uCoz